ANOVA P‑Value Calculator

ANOVA P‑Value Calculator Enter your ANOVA F‑statistic along with the numerator degrees of freedom (\(d_1\)) and denominator degrees of freedom (\(d_2\)). The p‑value is computed as: $$ p = 1 – I_{\frac{d_1 F}{d_1 F + d_2}}\Bigl(\frac{d_1}{2},\frac{d_2}{2}\Bigr). $$ * Ensure \( F \ge 0 \), \( d_1 \ge 1 \), and \( d_2 \ge 1 \). […]

Read More

F‑Score (F1) Calculator

F-Score (F1) Calculator F‑Score (F1) Calculator Compute the F1 score—the harmonic mean of precision and recall—using: $$ F_1 = 2 \cdot \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}. $$ * Enter precision and recall values (each between 0 and 1). Step 1: Enter Parameters Precision: e.g., 0.8 Recall: e.g., 0.7 Calculate F‑Score Calculated F‑Score F1 Score: Recalculate […]

Read More

Log‑normal Distribution Variance Calculator

Log-normal Distribution Variance Calculator Log‑normal Distribution Variance Calculator For a log‑normal distribution with parameters \(\mu\) and \(\sigma\) (where \(\ln(X) \sim N(\mu, \sigma^2)\)), the variance is: $$ \operatorname{Var}(X) = \Bigl(\exp\left(\sigma^2\right)-1\Bigr)\exp\Bigl(2\mu+\sigma^2\Bigr). $$ * Enter the location parameter \(\mu\) and the scale parameter \(\sigma\) (with \(\sigma > 0\)). Step 1: Enter Parameters Location Parameter, \( \mu \): e.g., […]

Read More

Log‑normal Distribution Sample Generator

Log-normal Distribution Sample Generator Log‑normal Distribution Sample Generator Generate random samples from a log‑normal distribution. If \(X \sim N(\mu, \sigma^2)\), then \(Y = \exp(X)\) follows a log‑normal distribution. * Enter the location parameter \(\mu\), the scale parameter \(\sigma\) (with \(\sigma > 0\)), and the number of samples to generate. Step 1: Enter Parameters Location Parameter, […]

Read More

Log‑normal Distribution Mode Calculator

Log-normal Distribution Mode Calculator Log‑normal Distribution Mode Calculator For a log‑normal distribution where \(\ln(X) \sim N(\mu, \sigma^2)\), the mode is computed as: $$ \text{Mode} = \exp\bigl(\mu – \sigma^2\bigr). $$ * Enter the location parameter \(\mu\) and the scale parameter \(\sigma\) (with \(\sigma > 0\)). Step 1: Enter Parameters Location Parameter, \( \mu \): e.g., 0 […]

Read More

Log‑normal Distribution Median Calculator

Log-normal Distribution Median Calculator Log‑normal Distribution Median Calculator For a log‑normal distribution where \(\ln(X) \sim N(\mu, \sigma^2)\), the median is: $$ \text{Median} = \exp(\mu). $$ * Enter the location parameter \(\mu\) (in practice, \(\mu\) is the mean of \(\ln(X)\)). Step 1: Enter Parameter Location Parameter, \( \mu \): e.g., 0 Calculate Median Calculated Median Median: […]

Read More

Log‑normal Distribution Mean Calculator

Log-normal Distribution Mean Calculator Log‑normal Distribution Mean Calculator For a log‑normal distribution with parameters \(\mu\) and \(\sigma\), the mean is given by: $$ E[X] = \exp\!\Bigl(\mu + \frac{\sigma^2}{2}\Bigr). $$ * Enter the location parameter \(\mu\) and the scale parameter \(\sigma\) (with \(\sigma > 0\)). Step 1: Enter Parameters Location Parameter, \( \mu \): e.g., 0 […]

Read More

Log-normal Distribution Inverse CDF Calculator

Log-normal Distribution Inverse CDF Calculator Log-normal Distribution Inverse CDF Calculator For a log‑normal distribution with parameters \(\mu\) and \(\sigma\), the inverse CDF (quantile function) is: $$ Q(p; \mu, \sigma) = \exp\Bigl(\mu + \sigma\,\Phi^{-1}(p)\Bigr), $$ where \(\Phi^{-1}(p)\) is the inverse standard normal CDF. * Enter a probability \( p \) (with \( 0 < p < […]

Read More

Log-normal Distribution CDF Calculator

Log-normal Distribution CDF Calculator Log-normal Distribution CDF Calculator For a log‑normal distribution with parameters \(\mu\) and \(\sigma\), the CDF is given by: $$ F(x;\mu,\sigma) = \Phi\!\Biggl(\frac{\ln(x)-\mu}{\sigma}\Biggr), $$ where \(\Phi(z)=0.5\Bigl[1+\operatorname{erf}\Bigl(\frac{z}{\sqrt{2}}\Bigr)\Bigr]\). * Enter a value for \( x \) (with \( x>0 \)), the location parameter \(\mu\), and the scale parameter \(\sigma>0\). Step 1: Enter Parameters \( […]

Read More

Log-normal Distribution PDF Calculator

Log-normal Distribution PDF Calculator Log-normal Distribution PDF Calculator For a log‑normal distribution with parameters \(\mu\) and \(\sigma\), the PDF is given by: $$ f(x; \mu, \sigma) = \frac{1}{x\,\sigma\,\sqrt{2\pi}} \exp\!\Biggl(-\frac{(\ln x – \mu)^2}{2\sigma^2}\Biggr), \quad x > 0. $$ * Enter \( x \) (must be \(> 0\)), \(\mu\) (location parameter), and \(\sigma\) (scale parameter, \(\sigma > […]

Read More