Beta Distribution Calculator
For shape parameters \( \alpha \) and \( \beta \) (both > 0), the Beta distribution is defined on the interval \([0,1]\) with the PDF:
$$ f(x;\alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \quad 0 \le x \le 1, $$
where \( B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \).
Step 1: Enter Parameters
Enter a positive value (e.g., 2)
Enter a positive value (e.g., 5)
Enter a value between 0 and 1 (e.g., 0.4)
Related Calculators
- Hypergeometric Distribution Calculators
- Triangular Distribution Calculators
- Poisson Distribution Calculators
- Negative Binomial Distribution Calculators
- Beta distribution Calculators
- Binomial Distribution Calculators
- Uniform Distribution Calculators
- Weibull Distribution Calculators
- Studentized Range (Tukey’s) Distribution Calculators
- Students t Distribution Calculators
- Pareto Distribution Calculators
- Normal Distribution Calculators
- Log-normal Distribution Calculators
- Chi-Square Distribution Calculators
- Kumaraswamy Distribution Calculators
- Inverse Gamma Distribution Calculators
- Gamma Distribution Calculators
- Exponential Distribution Calculators
- Cauchy Distribution Calculators
- F Distribution Calculators