Beta Distribution Calculator

Beta Distribution Calculator

For shape parameters \( \alpha \) and \( \beta \) (both > 0), the Beta distribution is defined on the interval \([0,1]\) with the PDF:

$$ f(x;\alpha,\beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \quad 0 \le x \le 1, $$

where \( B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \).

Step 1: Enter Parameters

Enter a positive value (e.g., 2)

Enter a positive value (e.g., 5)

Enter a value between 0 and 1 (e.g., 0.4)

Beta Distribution: $$ f(x;\alpha,\beta)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} \quad \text{for } 0\le x\le1 $$

Expected Value: $$ \frac{\alpha}{\alpha+\beta} \quad\text{and}\quad \text{Variance: } \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} $$

Related Calculators