Terminal Velocity using Stoke’s Law Calculator

Terminal Velocity using Stoke’s Law Calculator

Calculate the terminal velocity of a spherical particle in a viscous fluid using the equation:
\[ v_t = \frac{2\,r^2\,(\rho_p – \rho_f)\,g}{9\,\mu} \] where \(r\) is the radius, \(\rho_p\) is the particle density, \(\rho_f\) is the fluid density, \(g\) is the gravitational acceleration, and \(\mu\) is the dynamic viscosity.

* Enter all values in SI units.

Step 1: Enter Parameters

Example: 0.001 m (1 mm)

Example: 2500 kg/m³

Example: 1000 kg/m³

Example: 9.81 m/s²

Example: 0.001 Pa·s (for water)

Formula: \( v_t = \frac{2\,r^2\,(\rho_p – \rho_f)\,g}{9\,\mu} \)


Practical Example:
For a sphere with radius 0.001 m, particle density 2500 kg/m³, fluid density 1000 kg/m³, \( g = 9.81 \) m/s², and dynamic viscosity 0.001 Pa·s:
\[ v_t \approx \frac{2 \times (0.001)^2 \times (2500 – 1000) \times 9.81}{9 \times 0.001} \approx 0.324\, \text{m/s} \]