F Distribution Inverse CDF Calculator

    F Distribution Inverse CDF Calculator

    For the F distribution with degrees of freedom \( d_1 \) and \( d_2 \), the cumulative distribution function is given by: $$ F(x; d_1, d_2) = I\left(\frac{d_1 x}{d_1 x + d_2}; \frac{d_1}{2}, \frac{d_2}{2}\right), \quad x \ge 0. $$ The inverse CDF finds the value \( x \) such that \( F(x; d_1, d_2) = p \).

    * Enter a probability \( p \) (0 < \( p \) < 1) and degrees of freedom (\( d_1 > 0 \) and \( d_2 > 0 \)).

    Step 1: Enter Parameters

    e.g., 0.95

    e.g., 5

    e.g., 10

    Formula: $$ F(x; d_1, d_2) = I\left(\frac{d_1 x}{d_1 x + d_2}; \frac{d_1}{2}, \frac{d_2}{2}\right) \quad (x \ge 0). $$ The inverse CDF finds \( x \) such that \( F(x; d_1, d_2) = p \).

    Related Calculators