Kumaraswamy Distribution Inverse CDF Calculator

Kumaraswamy Distribution Inverse CDF Calculator

The Kumaraswamy distribution has CDF: $$ F(x; a, b) = 1 – (1 – x^a)^b, \quad 0 \le x \le 1. $$ Its inverse is given by: $$ F^{-1}(p; a, b) = \Bigl[ 1 – (1-p)^{\frac{1}{b}} \Bigr]^{\frac{1}{a}}, \quad 0 \le p \le 1. $$

* Enter a probability \(p\) (between 0 and 1) and parameters \(a > 0\) and \(b > 0\).

Step 1: Enter Parameters

e.g., 0.5

e.g., 2

e.g., 3

Inverse CDF Formula: $$ F^{-1}(p; a, b) = \Bigl[ 1 – (1-p)^{\frac{1}{b}} \Bigr]^{\frac{1}{a}}. $$