Kumaraswamy Distribution Variance Calculator

Kumaraswamy Distribution Variance Calculator

For the Kumaraswamy distribution with parameters a>0 and b>0, the kth moment is E[Xk]=bΓ(1+ka)Γ(b)Γ(1+ka+b). In particular, the mean is μ=bΓ(1+1a)Γ(b)Γ(1+1a+b), and the variance is Var(X)=E[X2]μ2, where E[X2]=bΓ(1+2a)Γ(b)Γ(1+2a+b).

* Enter parameters a>0 and b>0. The PDF is f(x;a,b)=abxa1(1xa)b1,0x1.

Step 1: Enter Parameters

e.g., 2

e.g., 3

Variance is computed as: Var(X)=E[X2](bΓ(1+1a)Γ(b)Γ(1+1a+b))2, where E[X2]=bΓ(1+2a)Γ(b)Γ(1+2a+b).

Related Calculators