Maximum Yield of Intermediate Product Calculator

Maximum Yield of Intermediate Product Calculator

For a sequential reaction: \( \text{A} \xrightarrow{k_1} \text{B} \xrightarrow{k_2} \text{C} \), the intermediate B reaches its maximum concentration at:
\[ t_{\text{max}} = \frac{\ln\left(\frac{k_2}{k_1}\right)}{k_2 – k_1} \] and the maximum yield of B (as a percentage of the initial A) is:
\[ \%B_{\text{max}} = \frac{k_1}{k_2 – k_1}\left(e^{-k_1t_{\text{max}}} – e^{-k_2t_{\text{max}}}\right) \times 100\% \]

* Enter the rate constants \( k_1 \) and \( k_2 \) (in s⁻¹), with \( k_2 \) > \( k_1 \).

Step 1: Enter Reaction Rate Constants

Example: 0.05 s⁻¹

Example: 0.10 s⁻¹ (must be greater than \( k_1 \))

Formulas:
\( t_{\text{max}} = \frac{\ln(k_2/k_1)}{k_2 – k_1} \)
\( \%B_{\text{max}} = \frac{k_1}{k_2 – k_1}\left(e^{-k_1t_{\text{max}}} – e^{-k_2t_{\text{max}}}\right) \times 100\% \)