Calculate the parameters of a projectile launched on level ground.
    Enter the initial velocity \( v_0 \), launch angle \( \theta \), and gravitational acceleration \( g \).

    * Ensure the values are in SI units: m/s for velocity and m/s² for gravity.

    Step 1: Enter Parameters

    Example: 20 m/s

    Angle relative to horizontal

    Default: 9.81 m/s²

    Derived Formulas:
    Time of Flight: \( T = \frac{2v_0\sin\theta}{g} \)
    Maximum Height: \( H = \frac{v_0^2\sin^2\theta}{2g} \)
    Range: \( R = \frac{v_0^2\sin(2\theta)}{g} \)


    Example:
    For \( v_0 = 20\,\text{m/s} \), \( \theta = 45^\circ \), and \( g = 9.81\,\text{m/s}^2 \), the calculator computes the time of flight, maximum height, and range.

    Kinematics Tutorial: Using a Parabolic Projectile Calculator (Level Ground)

    Classic projectile‑motion problems assume a projectile is launched and lands on the same horizontal plane. Neglecting air resistance, the trajectory is a parabola fully described by launch speed \(v_0\) and launch angle \(\theta\). The Parabolic Projectile Calculator (Level Ground) instantly computes time of flight, horizontal range, peak height, and gives an interactive plot for classroom demonstrations, sports analysis, and basic engineering design. This guide reviews the core equations and shows how to use the online tool at freeonlinecalculators.net.

    Why Study Projectile Motion?

    • Sports science (basketball shots, javelin throws, soccer kicks).
    • Initial ballistics and pyrotechnics calculations.
    • Physics education: illustrates 2‑D kinematics and independence of horizontal & vertical motion.

    Key Equations (for \(y_0 = 0\))

    Position vs time:

    \( x(t) = v_0\cos\theta\,t,\qquad y(t) = v_0\sin\theta\,t – \tfrac{1}{2}gt^2 \)

    Time of Flight \(t_\text f\)

    \( t_\text f = \frac{2v_0\sin\theta}{g} \)

    Horizontal Range \(R\)

    \( R = \frac{v_0^2\sin(2\theta)}{g} \)

    Maximum Height \(y_\text{max}\)

    \( y_\text{max} = \frac{(v_0\sin\theta)^2}{2g} \)

    Angle for Maximum Range

    \( \theta_\text{opt} = 45^\circ \)   (on level ground, without air drag)

    Default gravitational acceleration: \(g = 9.81\;\text{m s}^{-2}\).

    How to Use the Online Parabolic Projectile Calculator

    1. Open Parabolic Projectile Calculator.
    2. Enter:
      • Initial Speed (v₀)
      • Launch Angle (θ) (choose degrees or radians)
      • Gravity (g) (optional override)
    3. Click Calculate to see:
      • Time of flight
      • Horizontal range
      • Peak height
      • A plotted trajectory curve
    4. Use Reset for new inputs or try the Optimize Angle button to find the angle that maximizes range for the chosen speed.

    Example Problems

    Example 1 — Basketball Free‑Throw

    Shot: \(v_0 = 7.5\;\text{m/s}, θ = 52°\).
    \(t_\text f = 2v_0\sinθ/g \approx 1.17\;\text s\).
    \(R = v_0^2\sin2θ/g \approx 6.0\;\text m\).
    \(y_\text{max} = (v_0\sinθ)^2/(2g) \approx 2.2\;\text m\) (clears a 3 m‑high rim if launched from a 2 m release point).

    Example 2 — Long‑Jump Training Drill

    \(v_0 = 9.0\;\text{m/s}, θ = 20°\).
    \(t_\text f \approx 0.64\;\text s\). \(R \approx 5.5\;\text m\). \(y_\text{max} \approx 0.55\;\text m\).

    Frequently Asked Questions

    Does the calculator account for air drag?

    No—this ideal model ignores air resistance. For high‑speed or long‑distance trajectories, drag shortens range; use specialized ballistic software for accuracy.

    Why is 45° optimal only on level ground?

    Launch/landing on the same plane and no drag yield symmetric motion, making 45° maximize \(\sin2θ\). With elevation differences or drag, the optimal angle shifts.

    Can I input speed in mph or kph?

    Yes—toggle the units dropdown, or let the calculator auto‑convert to m/s internally.

    How does wind affect the results?

    Wind introduces horizontal and vertical drag components, altering both range and flight time. The current model does not include wind.