Skip to content Skip to footer

Projectile Motion Trajectory Calculator

Projectile Motion Trajectory Calculator

Projectile Motion Trajectory Calculator

Enter the initial velocity, launch angle, and gravitational acceleration to compute and plot the projectile's trajectory.
The key equations used are:
Time of Flight: \( t_{total} = \frac{2v_0\sin\theta}{g} \), Range: \( R = v_0\cos\theta \, t_{total} \), Maximum Height: \( H_{max} = \frac{v_0^2\sin^2\theta}{2g} \),
and the trajectory: \( x(t) = v_0\cos\theta \, t,\quad y(t) = v_0\sin\theta \, t - \frac{1}{2}gt^2 \).

* Enter initial velocity (m/s), launch angle (°), and gravitational acceleration (m/s²).

Step 1: Enter Parameters

Example: 20 m/s

Example: 45°

Example: 9.81 m/s²

Equations used:
Time of Flight: \( t_{total} = \frac{2v_0\sin\theta}{g} \)
Range: \( R = v_0\cos\theta \, t_{total} \)
Maximum Height: \( H_{max} = \frac{v_0^2\sin^2\theta}{2g} \)
Trajectory: \( x(t)=v_0\cos\theta\,t,\quad y(t)=v_0\sin\theta\,t-\frac{1}{2}gt^2 \)


Practical Example:
For an initial velocity of 20 m/s at a 45° angle and \( g=9.81 \) m/s², the time of flight is about 2.88 s, the range is about 40.8 m, and the maximum height is about 10.2 m.