Projectile Motion Trajectory Calculator

    Projectile Motion Trajectory Calculator

    Calculate the projectile motion parameters using the formulas:
    \( T = \frac{2v_0\sin(\theta)}{g} \), \( H = \frac{v_0^2\sin^2(\theta)}{2g} \), and \( R = \frac{v_0^2\sin(2\theta)}{g} \).
    where \( v_0 \) is the initial velocity (m/s), \( \theta \) is the launch angle (degrees), and \( g \) is the gravitational acceleration (m/s²).

    * Enter initial velocity, launch angle, and gravitational acceleration.

    Step 1: Enter Projectile Parameters

    Example: 50 m/s

    Example: 45°

    Default: 9.81 m/s²

    Derived Formulas:
    \( T = \frac{2v_0\sin(\theta)}{g} \), \( H = \frac{v_0^2\sin^2(\theta)}{2g} \), \( R = \frac{v_0^2\sin(2\theta)}{g} \),
    and the trajectory equation
    \( y = x\tan(\theta) – \frac{g\, x^2}{2v_0^2\cos^2(\theta)} \).


    Example:
    For \( v_0 = 50\,\text{m/s} \), \( \theta = 45^\circ \), and \( g = 9.81\,\text{m/s}^2 \), the calculator computes the time of flight, maximum height, and range.