Skip to content Skip to footer

Projectile on an Incline (Downward Motion) Calculator

Projectile on an Incline (Downward Motion) Calculator

Projectile on an Incline (Downward Motion) Calculator

Calculate key parameters for a projectile launched downward on an incline (with the projectile moving downward relative to the plane).
The equations used are:
Time of Flight: \[ t = \frac{2\,v_0\,\sin\left(\phi-\theta\right)}{g\,\cos\phi} \]
Range along the Incline: \[ R = \frac{2\,v_0^2\,\cos\theta\,\sin\left(\phi-\theta\right)}{g\,\cos^2\phi} \]

* Enter the initial velocity (m/s), launch angle (°), incline angle (°), and gravitational acceleration (m/s²). Ensure that the launch angle is less than the incline angle.

Step 1: Enter Parameters

Example: 20 m/s

Example: 20° (measured from the horizontal)

Example: 30° (angle of the incline relative to horizontal)

Example: 9.81 m/s²

Formulas:
Time of Flight: \( t = \frac{2\,v_0\,\sin(\phi-\theta)}{g\,\cos\phi} \)
Range along the Incline: \( R = \frac{2\,v_0^2\,\cos\theta\,\sin(\phi-\theta)}{g\,\cos^2\phi} \)


Practical Example:
For an initial speed of 20 m/s, a launch angle of 20°, an incline angle of 30°, and \( g = 9.81 \) m/s²:
– Time of Flight ≈ \( \frac{2 \times 20 \times \sin(30°-20°)}{9.81 \times \cos30°} \approx \frac{40 \times \sin10°}{9.81 \times 0.866} \approx 0.82\, \text{s} \)
– Range along the Incline ≈ \( \frac{2 \times 20^2 \times \cos20° \times \sin10°}{9.81 \times \cos^2 30°} \approx 7.3\, \text{m} \)