Skip to content Skip to footer

Projectile on an Incline (Downward Motion) Calculator

Projectile on an Incline (Downward Motion) Calculator

Projectile on an Incline (Downward Motion) Calculator

Calculate the key parameters for a projectile launched downward on an inclined plane.
Equations used:
Time of Flight: \[ t = \frac{2\,v_0\,\sin\left(\phi-\theta\right)}{g\,\cos\phi} \]
Range along the Incline: \[ R = \frac{2\,v_0^2\,\cos\theta\,\sin\left(\phi-\theta\right)}{g\,\cos^2\phi} \]

* Enter the initial velocity (m/s), launch angle (°), incline angle (°), and gravitational acceleration (m/s²). Ensure that the launch angle is less than the incline angle.

Step 1: Enter Parameters

Example: 20 m/s

Example: 20° (measured from horizontal)

Example: 30° (angle of the incline)

Example: 9.81 m/s²

Equations used:
Time of Flight: \( t = \frac{2\,v_0\,\sin(\phi-\theta)}{g\,\cos\phi} \)
Range along the Incline: \( R = \frac{2\,v_0^2\,\cos\theta\,\sin(\phi-\theta)}{g\,\cos^2\phi} \)


Practical Example:
For an initial velocity of 20 m/s, a launch angle of 20°, an incline angle of 30°, and \( g = 9.81 \) m/s²:
– Time of Flight ≈ \( \frac{2 \times 20 \times \sin(30°-20°)}{9.81 \times \cos30°} \) s
– Range along the Incline ≈ \( \frac{2 \times 20^2 \times \cos20° \times \sin(30°-20°)}{9.81 \times \cos^2 30°} \) m
(These values will be computed by the calculator.)