Terminal Velocity Calculator using Stoke’s Law

    Terminal Velocity Calculator using Stoke’s Law

    Calculate the terminal velocity of a sphere using Stoke’s Law:
    \( v_t = \frac{2}{9}\frac{r^2 (\rho_p – \rho_f) g}{\mu} \)
    where \( r \) is the sphere’s radius (m), \( \rho_p \) is the particle density (kg/m³), \( \rho_f \) is the fluid density (kg/m³), \( g \) is the gravitational acceleration (m/s²), and \( \mu \) is the dynamic viscosity (Pa·s).

    * Enter the required values to calculate the terminal velocity.

    Step 1: Enter Parameters

    Example: 0.01 m

    Example: 2500 kg/m³

    Example: 1000 kg/m³

    Default: 9.81 m/s²

    Example: 0.001 Pa·s

    Derived Formula:
    \( v_t = \frac{2}{9}\frac{r^2 (\rho_p – \rho_f) g}{\mu} \)


    Example:
    For a sphere with \( r = 0.01\,\text{m} \), \( \rho_p = 2500\,\text{kg/m}^3 \), \( \rho_f = 1000\,\text{kg/m}^3 \), \( g = 9.81\,\text{m/s}^2 \), and \( \mu = 0.001\,\text{Pa·s} \), the terminal velocity is computed using Stoke’s Law.