Triangular Distribution Median Calculator

Triangular Distribution Median Calculator

Calculate the median of a Triangular distribution defined by minimum \( a \), mode \( c \), and maximum \( b \).

* Enter values such that \( a \leq c \leq b \).

The median \( m \) is given by:
If \( c \ge \frac{a+b}{2} \): $$ m = a + \sqrt{0.5\,(b-a)(c-a)}; $$
If \( c < \frac{a+b}{2} \): $$ m = b - \sqrt{0.5\,(b-a)(b-c)}. $$

Step 1: Enter Parameters

e.g., 0

e.g., 5 (must satisfy \( a \le c \le b \))

e.g., 10

Formula:
If \( c \ge \frac{a+b}{2} \): \( m = a + \sqrt{0.5\,(b-a)(c-a)} \);
If \( c < \frac{a+b}{2} \): \( m = b - \sqrt{0.5\,(b-a)(b-c)} \).

Related Calculators