Weibull Distribution Inverse CDF Calculator

Weibull Distribution Inverse CDF Calculator

For a Weibull distribution with shape \(k\) and scale \(\lambda\), the CDF is: $$ F(x; k, \lambda) = 1 – \exp\Bigl[-\Bigl(\frac{x}{\lambda}\Bigr)^k\Bigr],\quad x\ge0. $$ Its inverse (quantile) is given by: $$ F^{-1}(p; k, \lambda) = \lambda\Bigl[-\ln(1-p)\Bigr]^{1/k},\quad 0\le p<1. $$

* Enter a probability \(p\) (0 ≤ \(p\) < 1), and parameters \(k>0\) and \(\lambda>0\).

Step 1: Enter Parameters

e.g., 0.5

e.g., 1.5

e.g., 2

Inverse CDF Formula: $$ F^{-1}(p; k, \lambda) = \lambda\Bigl[-\ln(1-p)\Bigr]^{\frac{1}{k}}. $$

Related Calculators